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Pattern stability and trijunction motion in eutectic solidification
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We demonstrate by both experiments and phase-field simulations that lamellar eutectic growth can be stable
for a wide range of spacings below the point of minimum undercooling at low velocity, contrary to what is
predicted by existing stability analyses. This overstabilization can be explained by relaxing Cahn’s assumption
that lamellae grow locally normal to the eutectic interface.
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The solidification of eutectic alloys is both a striking ex- one assumes that lamellae grow locally normal to the enve-
ample of spontaneous pattern formation in nature and a melepe of the eutectic interface. Langer later formalized this
allurgical problem of widely recognized practical importanceresult by showing that a large-scale and small-amplitude
[1]. This growth process has been traditionally studied byspacing modulation of a steady-state array obeys the diffu-
directional solidification experiments where a sample consion equatior5]
taining a binary alloy of near-eutectic composition is pulled
with a fixed speed/ in an externally imposed temperature IN(X,1)=D FN(X,), ()
gradientG. This setup produces a wide range of microstruc-
tures of which the simplest is an array of lamellae of twoWwherexis the coordinate perpendicular to the growth ais
coexistinge: and 8 solid phases growing into the metastableandD =D, , with
liquid, as shown in Fig. (B). The steady-state growth of a

perfectly periodic lamellar array is described by the classic VN dAT(N)| KnoV? 1 @
Jackson-HuntJH) theory[2] that predicts the relationship LG d\ |k)\ G Aé '
-0

We have defined\y=\q/\,, Where\, is the spacing of the
between the lamellar spacing (width of one lamella pajr ~ steady-state array being perturbed, and we have used the
and the undercoolind T(\) that is the difference between subscript “L” to stress that this expression f@ris obtained
the eutectic temperaturBz, at which the three phases( under Cahn's assumption that lamellae grow normal to the
B, and liquid coexist in equilibrium, and the average tem- interface. Langer’s analysis reproduces the JH-Cahn result
perature of the nonequilibrium eutectic interface spatially avthat growth is unstable below, since perturbations are am-
eraged over one spacing, (\). The first and second terms Plified (decay whenD, <0 (>0). In addition, it shows that
on the right-hand side of Eq1) represent the undercooling
necessary to drive the diffusive transport of the two chemical m —um___
components of the alloy in the liquictoupled growth and r "
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the capillary undercooling associated with the curvature of|_goF - - 1% 5
the solid-liquid interface, respectiveli(; and K, are con- g-az S i P
stants that only depend on the alloy system and the overal~-05¢ 155

composition of the sample. a) g 100 200 x%“’fm) . 500 600
The JH result implies that the growth undercooling has a

. — 12\ 112 ;
et v reseacne AT
Am= (K5 /Kq)"eV ™4 (2 g-g.g w % >
which is easily found by settingAT/dx =0. 05 | : : , , ; 128
Lamellar growth is well known to be unstable for spac- b) 9 i s ™ 50 o

ings smaller than a critical value, . This instability leads to
the local elimination of lamellae and is the mechanism by FIG. 1. Photographs: lamellar-eutectic fronts of a nearly eutectic
which the array increases its average spacing during the dyzBr,-C,Cls alloy in directional solidificatior(the growth direction
namical transient that produces the final pattern. Hence, it is upward in 12-um-thick samples. Graphs show interlamellar
crucially important for understanding pattern selection in thisspacing\ (thin lines and positionz of the front (thick lines as
system. Oscillatory instabilities are also known to limit the functions of the space variabbe (a) Stationary pattern\(=0.5
array stability at large spaciri®,4]. JH have credited Cahn ums?!, G=80Kcm'). (b) Modulated pattern \{=0.25

in Ref.[2] for pointing out that\ . should be equal ta, if  ums?! G=48 KcmY).
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FIG. 2. UndercoolingTg—T,, VS spacingh measured experi- X (pm)
mentally from the photograph shown in Figbl (open circles and ) _
dots. The thick line represents the best fit of the JH law, @3} to FIG. 3. Experimental measurements of the spacings the

the data represented by open circles. The vertical bar represents tAeace variablex at different timest showing the relaxation of a
error range. A remarkable feature is the presence of spacings coiﬂfge'scmel modulation Ofl a lamellar pattern ofo~1. (G
siderably smaller than,,~27 um. The value of the smallest stable =80 Kcm™*, V=0.5ums ") The inset shows the amplitudeof

spacing\. predicted from Eq(11) below is 19um. the dominant moddwavelength of 145um) as a function oft,
fitted by an exponential latime constant of 410)s

lamella elimination is initiated by a long-wavelength diffu- i i —
sive instability that is generically present in one-dimensionaf©c@l front undercooling using ,,(x) =Gz(x) + To, where
pattern forming systems with translation symmetry alang 1o iS an unknown constant. By eliminating betweenTy

In this paper, we study the steady-state and stability prop= Ta»(X) @ndA(x), we obtainTo—T,,(N), which we then
erties of lamellar eutectic growth by thin-sample directionalfit to Ed. (1) expressed in the formTo—T,,())
solidification experiments in the transparent organic systent A Tm(AMAm+Xm/A)/2—ATg, usingAp, ATm, andAT,
CBr,-C,Clg and by two-dimensional simulations of a phase-=Te~ To as adjustable parameters. A plot B§—T,,())
field model, and we extract from both approaches indeperand its fit is shown in Fig. 2. The fit is very good ferlesser
dent accurate determinations ®f, and \.. An important than about 1.25, . The departure observed beyond this limit
and novel component of our experiments is the direct mealS compatible with the one which exists between the numeri-
surement oAT(\), which allows us to obtain, from the ~ cally calculated curves\T(A) and the JH approximation
minimum of this curve rather than computing its value from[3.7]. We performed such measurements Yoranging from
Eq. (2), thereby circumventing uncertainties in materials pa-0.125 to 0.5 ums™*. We found \;V=K,/K;=193
rameters. We find that, in both experiments and simulations: 16 um®s™* and AT2/V=4K;K,=(2.7+1.3)x10 °
\. is substantially smaller than,,, even for typical direc- K2sum™1. These values compare well to those calculated
tional solidification growth conditions where the two spac-from the material constants of CBE,Clg given in Ref.[8],
ings have previously been assumed equal. Furthermore, lmamely, )\ZmV=185i 20 um3s™! and AT%/V:(l.Zi 0.2)
analyzing the decay of long-wavelength perturbations of the< 1073 K?sum™?.
array in both experiments and simulations, we obtain a direct To study experimentally the small spacing stability limit,
measurement oD, which allows us to shed light on the we exploit the fact thak,,~V~ Y2 Therefore, we can effec-
origin of the discrepancy between and\ . tively vary Ao/\, by performing downward velocity jumps

The experiments were made with a nearly eutecticof relatively large amplitude. Namely, we start from a stable
CBr,-C,Clg alloy prepared with zone refined materials in quasistationary periodic array of spacing at a higher ve-
thin (12-.um-thick) glass wall sample$8 mm wide and 60 locity, and then observe whether the same array at the lower
mm long. The values ofG used ranged from 40 Kcnt to  velocity, and hence smallexg/A,,, remains stable or be-
110 Kcmi ! (+10%), and those o¥ from 0.125 to 0.75 comes unstable.
ums }(=4%). Details concerning the preparation of the  To measure experimentally the array diffusion consEant
samples, the solidification setup, and the visualization of theve use the fact that the amplitude of a long-wavelength

front shape can be found in Refg.6]. modulation of spacing of the form
The steady-statA T(\) curve has never been measured
directly due to the fact thafT,, is usually of the order N(Xt)=Ng+ O\ exp(ikX+ wyt) 5)

0.01K, whereas the absolute temperature is not known with

a precision greater than about 0.1 K. To overcome this difgecays exponentially in time when the array is stablg (
ficulty, we exploit two key ingredients. First, as will be de- > ). Substituting this form in Eq(3), we obtain the simple
scribed elsewhere, we are able to create a large-scale mOdGispersion relationn, = — Dk?, which is valid if the wave-
lation of spacing where\(x) varies between two extreme |ength of the perturbation®/k>\,. Knowingk, and calcu-
values that comprisk,, as shown in Fig. (b). Second, we |ating w, by a fit of the measured amplitude of the modula-
measure the coordinate of the solid-liquid interface aver- tion to a decaying exponential, we obta. This is

aged over ona, which we denote b;(x), and compute the illustrated in Fig. 3 for a case wherer2k~7\,. We deduce
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FIG. 4. Simulated evolution of an unstable array fog=0.84
andl/l5=20. Growth direction is from bottom to top. For a ten
times larger temperature gradient (I,=2), the same array was
stable, althoughl  is significantly smaller than 1. The inset shows
growth rateswy of spacing perturbations versus wave vedtor
Circles represent; /I =20; squares represeht/Ip=2. Dashed
lines represent the fitey,=Dk?, obtained from the points with
smallestk.

from this measurement that

DZDL-FDH, (6)
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FIG. 5. Dy/(V\o) vs Ay for simulations and experiments.
Dashed line, Eq(7) drawn withA=0.15.

[10]. The strength of the temperature gradient is measured by
the ratiol /15, wherel=mAc/G is the thermal lengthri

is the magnitude of the liquidus slope in the phase diagram
andAc is the width of the eutectic platepandl=D,/V is

the diffusion length.

Steady-stateAT(N) curves were obtained from short
simulations with two lamellae. The stability was studied with
long simulations where steady-state arrays of up to 20 lamel-
lae, constructed from the two-lamella solutions, are slightly
perturbed by a small random modulation of the spa¢kig.

4). The stability spectrum is obtained from a Fourier decom-
position of the trijunction positions and exponential fits of
the amplitude of modulation vs time for different wave num-
bersk. Next, D is extracted by a quadratic fit @ vs k at
smallk. The stability limit\; is then obtained by determin-
ing whereD changes sign, and the valuesdf are obtained
by subtractingD, from D. We find that the dimensionless
ratio D /(V\o) varies withA,, but negligibly withG andV.
Moreover, we find that the simple form
D/(VNg)=AA, @
with A~0.15 gives a reasonable fit to our phase-field simu-
lation results as shown in Fig. 5. Remarkably, our experi-
mentally determined values & are close to those obtained

whereD is a positive contribution responsible for the over- in the phase-field simulations, even though the two alloy
stabilization of the array. The latter is calculated by takingsystems are different.

the difference betweel, andD, evaluated via Eq4) using
the value K;=1.9x10 3 Ks um 2 obtained from our
present experiments.

To interpret our findings, let us briefly review Langer’s
analysis that yieldD =D, . lIts first ingredient is the as-
sumption that the interface adjusts adiabatically its average

Next, we simulate a simple phase-field model of a two-temperature to the local spacing, or

component AB) eutectic alloy that is completely symmetric
under the exchange af and 8 [9]. Our goal here is not to

AT(X,1)~—=GL(x,1), ®

model quantitatively the experiments but to demonstrate the
generality of our results in different alloy systems. ThewhereAT()\) is the same as in steady state di(®) is thez

model works with two dynamic fields, an order parameter

coordinate of the envelope of the eutectic interface, defined

that distinguishes between liquid and solid, and the conceras a smooth curve interpolating the positions of the three-

trationc (mole fraction ofB). The solute diffusivity vanishes
in the solid and is constant and equal Dg in the liquid.

Directional growth is implemented using the frozen-

temperature approximation(z,t)=Tg+ Gz—Vt, and peri-
odic boundary conditions ix are used in all simulations

phase junctiongtrijunctions, with the origin atTg. The
second is Cahn’s assumption that lamellae grow normal to
this envelope, which for a small perturbation is equivalent to

aty(xit)m_V&xg(XJ)i (9)
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wherey(x,t) is the lateral displacement of trijunctions from should be. For the phase-field simulatiois, € 0.1120), we
their steady-state positions. Finally, it follows from the defi- find A,=0.942 forl+/I5=20 andA,=0.715 forl+/Ip=2.
nition of y that A(x,t)~N\q(1+dyy). Differentiating both Two previous stability analyses have predicted that
sides of this identity with respect to time and using Ed$.  should be smaller tham,,. The one by Caroli and co-
(8), and (9), one obtains the diffusion equatidB) with D \workers[11], however, is restricted to a largg limit that
=D, . o ) . cannot be compared with our results. The other by Chen and
We checked that Eq8) is indeed faithfully obeyed in the payis[12] does not have this restriction, but predicts a de-
range of wavelengths that we consider here. Consequentlﬁanure ofA, from A, that is about one order of magnitude
the discrepancy betweel and D, must originate from & gmajier than found here and predicted by EHl). We be-
correction to Cahn’s nqrmal growth assumption. Itis SlmpleIieve that the lateral motion of the trijunctions is due to a
to show that the modified phenomenological form coupling between the diffusion field and the nonplanar front
Y (X, 1)~ =V, (X, ) + D) d A (X, 1)/ Ng (10  geometry on the scale of the individual lamellae; such effects
would appear only at higher orders in the analyses cited
yields the diffusion equatio3), with D given by Eq.(6). above. Therefore, an analytical understanding of eutectic sta-
Equation (10) implies that trijunctions also move locally bility at small spacings from sharp-interface models is still
“parallel” to the envelope of the eutectic interface in re- |acking.
sponse to a gradient of spacing. To see physically why this The present results shed light on a number of previous
lateral motion overstabilizes the pattern, consider a local degpservations. In metallic eutectick; is generally close to
pression in an array of initial spacing,. Cahn's normal 1052 K s,m~2[13,14], so that the value 0¥ below which
growth assumption implies that such a depression will proy,e geparture ofA, from unity becomes significant is of
duce a local decrease of spacing, and hence a local increa&sout 1umst for G in the 100 Kcnv* range. This may
in undercooling will amplify this depression Ko<\, (be- . L — . ,_05 —.
causedAT/dN<O0 in this casg This well-known argument explain thg .deV|at|on'from the law eV ! Wherg)\ IS
yields N\c=\,. In contrast, the second term on the right- ﬁgr;%eeemnpgi)csaglri//e%efgﬁgwi\:e{ﬁgs :g;i?t'iﬁlpg_cl'n?r{ ;Vh'Ch

hand side of Eq(10) implies that the lateral motion of tri- X : - .
junctions oppoge(s t)he I[())cal decreasevinand hence helps number of metallic eutectidd5]. Similarly, the overstability
flatten the interface due to the lateral motion of the trijunctions may explain why
A prediction forA —\./\,, can be obtained by setting coupled growth in a peritectic system has recently been
D=D.+D.=0. which. using E s(2), (&), and (7). yields found to be stabl¢16] in a situation, analogous to that of
the chic eH ua:cion ’ g B4ste). 1), Y eutectics al\<\,,, where the interface should be unstable
q according to the JH-Cahn stability argumepts]. Finally,

1 AG our results also improve our understanding of the morpho-
-+ ——A.=0. (11 logical instability that leads to the formation of eutectic colo-
A7 KiV nies in the presence of a dilute ternary impufigy9].
With K;=1.9x10"2 Ksum™2 andA=0.15, we obtaim This work was supported by the Centre National d’Etudes

=0.70 for the experiment of Fig. 2; the lowest observedSpatiales, France, and by the US Department of Energy un-
spacings are just above the predicted stability threshold, as dter Grant No. DE-FG02-92ER45471.
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